Таламус: функции и строение. Роль таламуса и гипоталамуса в организме

Расположение

Таламус является частью больших полушарий переднего мозга. Он расположен латеральней боковых желудочков – полостей мозга, которые являются частью системы циркуляции ликвора (спинномозговой жидкости). Снизу от него находится гипоталамус, от которого зрительные бугры отделены бороздой.

Выше и несколько снаружи от таламуса находятся базальные ядра. Эти образования необходимы для осуществления точных, координированных движений. Друг от друга эти структуры разделены внутренней капсулой – пучком белого вещества переднего мозга, через который проходят проводящие пути от периферии к центру.

Между собой правая и левая части таламуса соединены межталамическим серым веществом. Оно присутствует у 70% людей.

Основные функции

Строение данного образования является довольно сложным, что объясняется широким спектром выполняемых таламусом функций. Основной составляющей таламуса является ядро, образованное из серого вещества мозга, то есть тел нервных клеток. Всего в таламусе насчитывается около 120 ядер. В зависимости от места размещения ядра классифицируются на следующие группы:

  • Передние.
  • Латеральные. Задняя часть этой группы, в свою очередь, подразделяется на подушку, медиальное и латеральное коленчатые тела.
  • Медиальные.

В зависимости от функций ядра классифицируются на такие группы:

  • специфические;
  • ассоциативные;
  • неспецифические.

Таламус – ключевое образование при передаче нервных импульсов в кору головного мозга. При повреждении коры именно благодаря работе таламуса возможно частичное восстановление таких функций, как осязание, ощущение боли и температуры.

Еще одна важная функция таламуса – интеграция моторной и сенсорной деятельности. Это возможно благодаря поступлению в таламус информации как от моторных, так и от сенсорных центров нервной системы.

Кроме того, таламус необходим для обеспечения внимания и сознания. Также он принимает участие в формировании поведенческих реакций.

Благодаря связи с гипоталамусом, о котором речь пойдет далее в статье, функции таламуса также охватывают запоминание, эмоциональное поведение.

Классификация ядер таламуса

Всего в зрительных буграх мозга насчитывается около 120 ядер. В зависимости от места нахождения их подразделяют на три группы:

  • медиальные;
  • латеральные;
  • передние.

В латеральной группе ядер выделяют, в свою очередь, медиальное и латеральное коленчатые тела, а также подушку.

Неспецифические ядра

Данная группа ядер зрительного бугра имеет ряд отличительных черт, объединяющих их. Во-первых, они получают импульсы от длинных нервных путей, которые обеспечивают передачу информации от соматосенсорных, зрительных и слуховых рецепторов к коре головного мозга. Через данные ядра импульс передается далее на соответствующие участки коры: соматосенсорную, слуховую и зрительную. Кроме того, информация от них поступает в премоторную и моторные участки коры.

Читайте также:  Столбняк инкубационный период симптомы лечение

Также специфические ядра получают обратную информацию от коры. В экспериментах доказано, что при удалении участка коры, соответствующего специфическому ядру, данное ядро также разрушается. А при стимуляции определенных ядер активизируются нервные клетки соответствующей им коры.

Данная группа получает информацию от коры, ретикулярной формации, ствола мозга. Именно из-за наличия этих связей у коры головного мозга есть возможность среди всей поступающей информации отбирать наиболее важную в данный момент.

Кроме того, в строение таламуса входят ядра, получающие информацию от красного и базальных ядер, лимбической системы, зубчатого ядра (расположено в мозжечке). Далее сигнал поступает к моторным зонам коры.

Эти ядра состоят из нервных клеток небольшого размера, принимающих информацию от нейронов других таламических ядер, лимбической системы, базальных ганглиев, гипоталамуса, ствола мозга. По восходящим путям ядра получают сигналы от болевых и температурных рецепторов, а через ретикулярную формацию – практически от всех остальных структур центральной нервной системы.

Специфические ядра зрительного бугра имеют ряд отличительных особенностей. Все образования этой группы получают сенсорную информацию от вторых нейронов (нервных клеток) чувствительных проводящих путей. Второй нейрон, в свою очередь, может быть расположен в спинном мозге или в одной из структур ствола мозга: продолговатом мозге, мосту, среднем мозге.

Каждый из сигналов, поступающих снизу, обрабатывается в таламусе и далее идет в соответствующую область коры. В какую именно область поступает нервный импульс, зависит от того, какую информацию он несет. Так, информация о звуках поступает в слуховую кору, об увиденных предметах – в зрительную и так далее.

Помимо импульсов из вторых нейронов проводящих путей, специфические ядра отвечают за восприятие информации, поступающей из коры, ретикулярной формации, ядер ствола мозга.

Читайте также:  Гиперкинезы у детей и взрослых

Ядра, которые находятся в передней части таламуса, обеспечивают проведение импульсов из лимбической коры головного мозга через гиппокамп и гипоталамус. После обработки информации она опять поступает в лимбическую кору. Таким образом, нервный импульс циркулирует по определенному кругу.

Неспецифическими эта группа ядер называется потому, что получает информацию практически от всех структур центральной нервной системы:

  • ретикулярной формации;
  • ядер экстрапирамидной системы;
  • других ядер зрительного бугра;
  • стволовых структур мозга;
  • образований лимбической системы.

Импульс от неспецифических ядер также идет ко всем областям коры головного мозга. Такая выборочность, как в случае с ассоциативными и специфическими ядрами, здесь отсутствует.

Так как именно эта группа ядер имеет наибольшее количество связей, считается, что благодаря ей обеспечивается слаженная, координированная работа всех участков головного мозга.

Ассоциативные ядра

Особенностью данной группы ядер является то, что они получают уже обработанные сигналы от других участков таламуса.

Благодаря их работе возможно осуществление интегративных процессов, при которых образуются обобщенные сигналы. Далее они передаются в ассоциативные участки коры головного мозга (лобную, теменную и височную доли). Именно благодаря наличию данного участка коры и ассоциативных ядер возможны такие процессы, как узнавание предметов, согласованность речи с моторной активностью, понимание трехмерности пространства и осознание себя в этом пространстве.

Ассоциативные ядра находятся ближе к задне-медиальной части таламуса, а также в области подушки. Особенность этих структур в том, что они не участвуют в восприятии информации, которая подходит из нижележащих образований центральной нервной системы. Эти ядра необходимы для получения уже обработанных сигналов в других ядрах таламуса или в вышележащих мозговых структурах.

Суть “ассоциативности” этих ядер в том, что к ним подходят любые сигналы, а нейроны способны их адекватно воспринять. Сигналы из этих структур поступают в области коры с соответствующим названием – ассоциативные зоны. Они расположены в височной, лобной и теменной частях коры. Благодаря поступлению этих сигналов человек способен:

  • узнавать предметы;
  • связывать речь с движениями и увиденными предметами;
  • осознавать положение своего тела в пространстве;
  • воспринимать пространство трехмерным и прочее.

Метаталамус

Отдельно выделяют группу ядер зрительного бугра под названием метаталамус. Данная структура состоит из медиального и латерального коленчатых тел.

Читайте также:  Депрессия у мужчин - причины развития, симптомы, диагностика, лечение

Медиальное коленчатое тело получает информацию о слухе. Из нижележащих отделов мозга информация поступает через верхние горбики среднего мозга, а сверху структура получает импульс из слуховой области коры.

Латеральное коленчатое тело относится к зрительной системе. Чувствительная информация к ядрам этой группы поступает от сетчатки глаза через зрительные нервы и зрительный тракт. Обработанная в таламусе информация далее идет к затылочной области коры, где находится первичный центр зрения.

Гипоталамус

Эта структура является основным регулятором вегетативных и эндокринных функций организма. Он находится под зрительным бугром и III желудочком. Основной структурной частью гипоталамуса также являются ядра, однако их здесь гораздо меньшее количество.

В зависимости от локализации выделяют следующие группы ядер:

  • передняя – паравентрикулярное, супрахиазменное;
  • средняя – инфундибулярное ядро;
  • зад­няя – ядра мамиллярных тел.

Ниже представлен перечень основных функций данной структуры:

  • управление активностью вегетативной нервной системы;
  • организация поведения (пищевое, половое, родительское, эмоциональное поведение и др.);
  • терморегуляция организма;
  • секреция гормонов: окситоцина, повышающего сократительную активность матки; вазопрессина, увеличивающего всасывание воды и натрия в почечных канальцах.

Перечисленные выше функции гипоталамуса обеспечиваются благодаря присутствию в нем разнообразных центров, а также специфических нервных клеток. Они способны реагировать на изменение состояния организма (температуру крови, водно-электролитный состав, количество в ней гормонов, концентрацию глюкозы и др.).

Таким образом, промежуточный мозг (таламус и гипоталамус в основном) имеет множество важнейших функций, благодаря которым возможна нормальная жизнедеятельность.

Симптомы поражения

Так как через таламус проходят практически все сигналы от других структур нервной системы, поражение зрительного бугра может проявляться массой симптомов. Обширное поражение таламуса можно диагностировать по следующим клиническим признакам:

  • нарушение чувствительности, в первую очередь – глубокой;
  • жгучие, резкие боли, которые сначала появляются при прикосновении, а потом и спонтанно;
  • нарушения моторики, среди которых встречается так называемая таламическая кисть, проявляющаяся чрезмерным сгибанием пальцев в пястно-фаланговых и разгибанием в межфаланговых суставах;
  • зрительные расстройства – гемианопсия (выпадение полей зрения с противоположной от поражения стороны).

Таким образом, таламус – важная структура головного мозга, которая обеспечивает интеграцию всех процессов в организме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *